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My research interests involve the nature of emergence, which I investigate using tools from

algorithmic information theory, machine learning, and (soon) fractal geometry.

When can we say emergence has occurred? An approach I take in the paper attached to this ap-

plication is to re-frame the question around compression, using the Minimum Description Length

(MDL) principle. If we have a model M that we use to explain some dataset D, a naïve model

selection criterion is to choose the model which achieves the best predictive performance on D.

How can we understand whether a “simpler" model is a better choice compared to a more complex

one which performs better? To give a poetic example, consider a puddle of water: the underlying

dynamics of water are certainly governed by quantum mechanics. However, if we have limited

memory and computational ability, we prefer to have access to coarse-grained hydrodynamic in-

formation, rather than information about the quantum state of the puddle. Though the quantum

description is more complete and can in principle be used to predict the behavior of the puddle

with greater accuracy, it requires considerably more information and computational resources to

achieve this. With only a few bits of information about macroscopic hydrodynamic variables, we

can achieve good prediction of the puddle’s dynamics, if we allow for some inaccuracy.

The MDL principle makes this trade-off sharp, and formalizes Occam’s Razor by asserting that

we should minimize the following sum:

Total Description Length of D Given M = H(D | M) + C(M) (1)

Where H(D | M) is the entropy of the data under the model, and C(M) is the model complex-

ity. That is, the best model for the data is the one which minimizes the sum of the entropy of the

data and the model complexity. Hence, we can identify emergence by the transition of our prefer-

ence for one model to another, as determined by the MDL. This also makes it clear that emergence

is relative to our computational resources: Laplace’s demon has no need for emergent descriptions

1



because its computational resources are unbounded. In the attached paper, I extended this idea to

formalize the notion of “coarse-graining” a model, then used the resultant machinery to explain

the grokking phenomenon in neural networks, where networks exhibit a sudden phase transition

from memorization of their training data to perfect generalization. Intriguingly, we observed a

characteristic rise and fall of complexity in the networks during the transition from memorization

to generalization. This same rise and fall of complexity was reported by Scott Aaronson and SFI

affiliate Sean Carroll in their work which studied the complexity dynamics of a cup of coffee. My

next work will explain the double descent phenomenon in terms of network complexity dynamics.

Machine learning researchers tend to use the tools of classical information theory, probability,

and statistics. Although successful, these tools limit analysis to stateless processes, and cannot pro-

vide a full account of the algorithmic nature of many phenomena in the natural world. I envision a

research program which moves beyond the statistical paradigm of random variables and stochastic

processes to an algorithmic information paradigm, whose mathematical foundations were laid out

by Kolmogorov, Chaitin, and Solomonoff. We have good reason to believe that much of the appar-

ent complexity we observe is in fact due to repeated iteration of simple rules. It may be possible

to bridge the algorithmic complexity of computation with the apparent complexity of the natural

world using ideas from fractal geometry. It is already known that the fractal (effective Hausdorff)

dimension deff of a set X can be understood in terms of its Kolmogorov complexity K, via:

deff = lim inf
n

K(X | n)
n

(2)

That is, the effective dimension of objects is deeply linked with their computational complexity.

This is another sign of emergence: effective dimensions which arise from irreducibly complex de-

scription. Machine learning must evolve to account for regularities beyond statistical description.

The renormalization group and effective field theories gave us our best yet analytical understand-

ing of the nature of emergence. Neural networks, Kolmogorov complexity, and fractal geometry

will do the same for analytically intractable complex systems.
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