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I study the nature of emergence using tools from algorithmic information theory, machine

learning, statistical mechanics, and (soon) fractal geometry.

When can we say emergence has occurred? My recent work re-frames the question around

compression, using the Minimum Description Length (MDL) principle. If we have a model M

that we use to explain some dataset D, a naïve model selection criterion is to choose the model

which achieves the best predictive performance on D. How can we understand whether a “simpler"

model is a better choice compared to a more complex one which performs better? To give a poetic

example, consider a puddle of water: the underlying dynamics of water are certainly governed by

quantum mechanics. However, if we have limited memory and computational ability, we prefer

to have access to coarse-grained hydrodynamic information, rather than information about the

quantum state of the puddle. Though the quantum description is more complete and can in principle

be used to predict the behavior of the puddle with greater accuracy, it requires considerably more

information and computational resources to achieve this. With only a few bits of information about

macroscopic hydrodynamic variables, we can achieve good prediction of the puddle’s dynamics,

if we allow for some inaccuracy.

The MDL principle makes this trade-off sharp, and formalizes Occam’s Razor by asserting that

we should minimize the following sum:

Total Description Length of D Given M = H(D | M) + C(M) (1)

Where H(D | M) is the entropy of the data under the model, and C(M) is the model complex-

ity. That is, the best model for the data is the one which minimizes the sum of the entropy of the
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data and the model complexity. Hence, we can identify emergence by the transition of our prefer-

ence for one model to another, as determined by the MDL. This also makes it clear that emergence

is relative to our computational resources: Laplace’s demon has no need for emergent descriptions

because its computational resources are unbounded. I extended this idea to formalize the notion of

“coarse-graining” a model, then used the resultant machinery to explain the grokking phenomenon

in neural networks, where networks exhibit a sudden phase transition from memorization of their

training data to perfect generalization. Intriguingly, we observed a characteristic rise and fall of

complexity in the networks during the transition from memorization to generalization. This same

rise and fall of complexity was reported in work by Aaronson et al. [1] which studied the complex-

ity dynamics of a cup of coffee. My next work explains the double descent phenomenon in terms

of network complexity dynamics.

Understanding the intrinsic complexity of neural networks lets us bound their generalization

performance. In particular, Lotfi et al. [3] show how we can quantify the expected risk R(h) for a

given hypothesis h, with probability 1− δ:

R(h) ≤ R̂(h) +

√
K(h) + 2 logK(h) + log(1/δ)

2n
(2)

Where K(·) is the Kolmogorov complexity, R̂(h) is the empirical risk, and n the number of sam-

ples used to calculate the empirical risk (i.e. the training dataset size). Intriguingly, one can see

that this statistical generalization bound corresponds with the MDL principle, so that models which

achieve the best total compression of the data correspond to those which are expected to generalize

best. Using ideas from algorithmic rate–distortion theory, I was able to produce tight bounds on

the Kolmogorov complexity via network compression. This let me track the complexity dynamics

of neural networks transitioning from memorization to generalization, providing a sharp picture of

the emergence of abstraction and understanding in networks.

Statistical generalization bounds like Equation 2 still rely on the iid assumption. This is suf-

ficient for simple stationary problems, but most decision problems in the natural world are non-
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stationary: the world changes. Furthermore, for multi-step decision problems the policy directly

induces distribution shift, since the next state depends on the current action taken. Generalization

to open-ended, real world environments requires methods which can handle distributional adapta-

tion. The Value Equivalence Principle [2] was recently proposed to generate optimal and efficient

world models for model-based reinforcement learning agents. It suggests that models ought to

coarse-grain away details which do not affect the agent’s plan: formally, the agent value func-

tion induces an equivalence class of world models which achieve equivalent performance under

the value function. This can be understood using the lossy compression framework I developed,

where the distortion function is taken to be the agent’s value function. I will use this link to lift

compression-based generalization bounds to the non-stationary, online setting.

We have good reason to believe that much of the apparent complexity we observe is in fact due

to repeated iteration of simple rules. It may be possible to bridge the algorithmic complexity of

computation with the apparent complexity of the natural world using ideas from fractal geometry.

It is already known that the fractal (effective Hausdorff) dimension deff of a set X can be understood

in terms of its Kolmogorov complexity K, via:

deff = lim inf
n

K(X | n)
n

(3)

That is, the effective dimension of objects is deeply linked with their computational complexity.

This is another sign of emergence: effective dimensions which arise from irreducibly complex de-

scription. Machine learning must evolve to account for regularities beyond statistical description.

The renormalization group and effective field theory gave us our best yet analytical understanding

of the nature of emergence. Neural networks, Kolmogorov complexity, and fractal geometry will

do the same for analytically intractable complex systems.
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