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1 Introduction

Designed in 1984 by Charles Bennett and Gilles Brassard, BB84 is the first
ever quantum cryptography protocol, designed to take advantage of principles
of quantum mechanics to securely share so-called ”keys” used in public key
cryptography, which can be used to encrypt and decrypt secret messages.

Classical key distribution protocols rely on the computational complexity
of reversing so-called ”one way functions”, which have no known reversible al-
gorithms which can be computed efficiently (i.e. in at most super-polynomial
time). However, this does not preclude the existence of efficient means of re-
versing these functions. In short, classical cryptography relies on the hope that
no one has come up with an efficient solution to a very difficult problem. On
the other hand, quantum key distribution is guaranteed to be secure.

A unique advantage of quantum cryptographic protocols such as BB84 is
their provable security, which allows for the detection of intruding listeners due
to measurements on a quantum state disturbing the system, a property not at
all seen in classical computation. In fact, the degree of eavesdropping on the
system is quantifiable, such that if it exceeds a given level, the communication
can be aborted and tried again until security is established. Therefore, one does
not need to presuppose the existence of any classically secure communication
channel for the quantum key distribution to take place.

2 Overview of Protocol

2.1 No Cloning Theorem

The security of the protocol relies on the famous No Cloning Theorem, which
we present a proof of:

Suppose you have a state
|φ〉A ε HA

which you wish to make a copy of into some blank or unknown state

|e〉B ε HB
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where HA = HB = H so the joint state of the system is initially

|φ〉A ⊗ |e〉B ε H⊗2

Since we obviously cannot measure the system via some Hermitian operation
without collapsing the state to an eigenket of the observable, we are looking for
some Unitary operator U : H⊗2 → H⊗2, such that

U(|φ〉A |e〉B) = eiθ(φ,e) |φ〉A |φ〉B

Where the phase factor θ ε R is unphysical. We now show that such a unitary
cannot exist:

Take two arbitrary states |ψ〉A , |φ〉A in the Hilbert Space H

〈φ|ψ〉 〈e|e〉 = 〈φ|A 〈e|B |ψ〉A |e〉B = 〈φ|A 〈e|B U
†U |ψ〉A |e〉B

which is, applying the action of the unitaries:

ei(θ(φ,e)−θ(ψ,e)) 〈φ|A 〈φ|B |ψ〉A |ψ〉B = ei(θ(φ,e)−θ(ψ,e)) 〈φ|ψ〉2

since |e〉 is normalized, implying 〈e|e〉 = 1, we have

‖ 〈φ|ψ〉 ‖ = ‖ 〈φ|ψ〉 ‖2

=⇒ ‖〈φ|ψ〉 ‖ = 1 or ‖ 〈φ|ψ〉 ‖ = 0

Therefore either |φ〉 = eiα |ψ〉 or |φ〉 ⊥ |ψ〉 which cannot be true in general for
arbitrary states. Therefore, a Unitary operator cannot clone a general arbitrary
state.

�

[Note that it is possible to find specific pairs of states that satisfy the above
requirements, such as |ψ〉 = 1√

2
(|0〉+ |1〉) and |φ〉 = 1√

2
(|0〉− |1〉) where 〈ψ|φ〉 =

0 = 〈ψ|φ〉2 but this relationship clearly does not hold for arbitrary states.]

2.2 BB84 Protocol

Say Alice wishes to send Bob a key which they can use to communicate. Alice
creates two strings, a and b, each n bits long. Then, she encodes the strings a
and b as a string of n qubits:

|ψ〉 =

n−1⊗
i=0

|ψaibi〉

where ai and bi are the ith bits of a and b. The pair aibi index into the compu-
tational and Hadamard basis according to:

|ψ00〉 = |0〉

|ψ10〉 = |1〉
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|ψ01〉 = |+〉 =
1√
2

(|0〉+ |1〉)

|ψ11〉 = |−〉 =
1√
2

(|0〉 − |1〉)

Noting that the value of bi determines the basis ai is encoded in:

bi = 0→ Computational Basis

bi = 1→ Hadamard Basis

(Hint: b stands for basis)

Now Bob generates a new random string b′ and measures each qubit he received
from Alice in the basis governed by b′i, noting each result in a binary string a′i.
Alice is now free to publicly announce the string b, so Bob can discard all the
b′is measured in the incorrect basis, publicly announcing the index of the bits
which he has thrown away. In principle, we are done and Bob and Alice share
the set of bits a which were not thrown out.

However, since this is a protocol designed for security from attacks, we wish
to consider the action of an eavesdropper, Eve. Because of the No Cloning The-
orem proved above, Eve cannot capture a state sent by Alice while also copying
and sending it to Bob, avoiding detection of her intrusion. What Eve can do
is measure a qubit sent by Alice, which of course collapses the state. Eve must
randomly guess which basis to measure each qubit in, so that on average her
probability of measuring in the correct basis is only 1

2 . Eve now creates the
state she measured again and sends it along to Bob, who is apparently unaware
of any tomfoolery.

To combat this, Alice actually announces some (say k) of the ais. Bob com-
pares his a′is with these, which due to Eve’s intrusion will be incorrect 1

2 of
the time. Bob and Alice test whether their randomly chosen k qubits agree,
and so can quantify the error/intrusion rate, and discard if it exceeds whatever
value they wish. With the comparison of more qubits comes greater certainty
of security and validity, which can be increased arbitrarily. Therefore we have
unconditional security.

Eve measures Alice’s qubit in the correct basis 50% of the time. When she
measures in the incorrect basis and sends a random result on to Bob, there is
still a 50% chance he will measure Alice’s originally intended bit. Therefore the
probability Eve is not detected is given by:

P (Eve not detected) = (
3

4
)N

where N is the number of times Bob and Alice compare their qubits which
were measured in the same basis. Solving for N , we can find the number of
times we need to sample results to get a desired confidence level that Eve is
detected:

N =
log(P (Eve not detected))

log( 3
4 )

where P (Eve not detected) is the maximum acceptable probability of Eve
going undetected.
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3 Simulation of Toy Algorithm

A standard method of visualizing qubits physically is as photons in a polar-
ization state. There are rectilinear and circular polarizations of the photon,
representative of the Computational and Hadamard bases. We first present a
table of a small sample run. Taking “x” to be the Hadamard (circular polariza-
tion) Basis and “+” to be the Computational (rectilinear) Basis:

Alice’s Qubit 0 1 1 0 1 0 0 1
Alice’s Basis + + x + x x x +
Alice Sends |0〉 |1〉 |−〉 |0〉 |−〉 |+〉 |+〉 |1〉
Eve’s Basis + x + + x + x +

Eve Measures and Sends |0〉 |+〉 |1〉 |0〉 |−〉 |1〉 |+〉 |1〉
Bob’s Basis + x x x + x + +

Bob Measures |0〉 |+〉 |+〉 |−〉 |1〉 |+〉 |0〉 |1〉
Public Reveal of Basis

Secret Key 0 0 0 1
Key Error? No Yes No No

In the above sample, Eve’s interference generated one error in the secret key, and
Eve has ( 2

3 )rds of the valid secret key bits. As discussed above, and according
to:

Probabilitydetection = 1− (
3

4
)N

To detect Eve with Probability = 0.999999999 Alice and Bob would need to
compare N = 72 key bits.

Because of the relatively simple nature of the protocol, we simply represent
each qubit in javascript as an object with two parameters: basis (Computa-
tional or Hadamard), which we can represent in binary; and bit value (1 or
0):

function Qubit (value, basis) {

this.value = value;

this.basis = basis;

this.getInfo = function() {

return this.value + ’ ’ + this.basis;

};

}

If Eve measures the qubit in the incorrect basis, we roll the dice and get a
random (with equal weighting) output of 1 or 0 in the given basis. The 50/50
coin toss in javascript is:

x = (Math.floor(Math.random() * 2) == 0) bool

where x is the resultant value. Since the basis choice can be represented in binary
(0 = false = Computational Basis, etc...) we can reuse this simple method to
generate every aspect of each qubit value, basis, and bad measurement result.
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Runs with many qubits converge to the calculated probability of detection,
as expected. We plot a histogram of times Eve was detected, along with the
calculated curve (assuming Eve intercepts every qubit):

It is puzzling why Eve was detected so few times when only one bit was
compared. It’s far below the expected probability curve. This may be a bug in
our code or transfer of data to plotting software...

4 Conclusions, outlook, current reality

BB84 is straightforward to model, and computationally easy to simulate. In-
truder effects are well understood and an arbitrary level of security confidence
is relatively easy to realize. One needs simply to use a few hundred qubits to
achieve a very high probability of security.

The BB84 protocol relies on single-photon source and detection, neither of
which exist in a cost-effective manner. There are some commercial options
which currently exist (id Quantique, SeQure Net, etc...) which have Quantum
Key Distribution networks already in place, and which have already been used in
the case of the Swiss Quantum Network’s two year test of a network installed in
Geneva in 2009. With advances in precision measuring instruments and cheaper
manufacturing costs, unconditionally secure distribution of keys is a very real
possibility. We did not simulate the effects of errors in detection, which could
play a significant role in bit errors between Alice and Bob.

Please don’t Eve-sdrop on people’s private communication.
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