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Abstract

We present an introduction to knot theory suitable for undergraduate
students: In section 1, we review basic definitions of general topology and
the notion of a fundamental group is introduced. In section 2 we partially
prove the essential van Kampen theorem and show how it relates to the
study of algebraic topology. In section 3, we redefine the fundamental
group using the notion of the groupoid, and the relation between loop
space and the groupoid is revealed. In section 4, basic definitions of knot
theory including Reidemeister moves and ambient isotopy are introduced,
we discuss knot invariants, specifically knot polynomials. In section 5, we
reinterpret knots as tensor contractions, and show how this leads naturally
to quantum field theory through the Yang-Baxter equation. In section 6,
the knot groups of right and left-handed trefoils are calculated explicitly
as an example.
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1 Point Set Topology

1.1 Topological Space

We begin with topology, which in a broad sense is the study of spaces without
a metric, where the notion of distance is not used. This is particularly suitable
for the study of knot theory, where we can intuitively see that the looseness or
tightness of a knot does not affect its intrinsic knot-like properties. We begin
with the definition of a topology, and summarize the relevant parts of the field:

Definition 1.1.1. Given a set X, we call a collection T of subsets of X a
topology, if it satisfies:

1. ∅, X ∈ T .

2. For any U ∈ T , T is closed under arbitrary unions of U ’s.

3. For any U ∈ T , T is closed under finite intersections of U ’s.

Remark. A space X with a topology Tx is called a topological space.

Definition 1.1.2. A space X with topology Tx is called Hausdorff if for any x,
y ∈ X with x 6= y, there exist two open sets U , V ∈ Tx and x ∈ U , y ∈ V such
that U ∩ V = ∅.

Remark. A Hausdorff space is a space where we can separate points by open
sets.
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1.2 Continuity And Continuous Function

Definition 1.2.1. Given two topological spaces X,Y with topologies Tx and
Ty respectively, let f : X −→ Y be a map. We say f is continuous if for any V
∈ Ty, f−1(V ) ∈ Tx.

Definition 1.2.2. Let f : X −→ Y . We say f is continuous at x ∈ X if for
every open set V in Y with f (x) ∈ V , there exists an open set U in X such that
f (U) ⊂ V .

Proposition 1.2.3. A function f : X −→ Y is continuous if and only if it is
continuous at every point in X.

Proof. If the function f is continuous in X, then it is obvious that such function
is continuous at every point in X.

Assume f is continuous at every point x ∈ X, so for every point x with
f(x) ∈ V where V is an open set in Y we have f(Ux) ⊂ V with x ∈ Ux. Thus
Ux ⊂ f−1(V ), we can write

f−1(V ) =
⋃

x∈f−1(V )

Ux

since the chosen open set V is arbitrary, we see that the function f is continuous
in X.

Definition 1.2.4. A continuous bijective map f : X −→ Y is called a homeo-
morphism if f−1 : Y −→ X is continuous as well.

Remark. If there exists a homeomorphism between X and Y , we say X and Y
are homeomorphic.

1.3 Connected and Path-Connected

Definition 1.3.1. Given a topological space X. We say X is connected if
whenever X = U ∪ V where U and V are disjoint open sets, we have {U, V }={∅,
X}. If there exist other disjoint open sets {U , V }such that X = U ∪ V , then
we call U, V the separation of X.

Remark. X is connected if and only if the only separation of X is {∅, X}.

Proposition 1.3.2. A space X is connected if and only if the only sets that are
both open and closed are ∅ and X.

Proof. Suppose X is connected and U is a subset of X which is both closed and
open but not ∅ and X, so V = X −U is both open and closed but not ∅ and X.
Thus {U, V } provides a separation of X. Here is a contradiction, so there must
be no such U and V .

The reverse implication is trivial.
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Definition 1.3.3. Given a continuous map f : [a, b] −→ X and x ∈ X, y ∈ X
where X is a topological space. Then f is called a path from x to y if f (a) = x,
f (b) = y. A space X is called path-connected if given any two points x, y ∈ X,
there exists a path between x and y.

1.4 Compactness

Definition 1.4.1. Let X be a space and {Ui} a collection of open sets. {Ui}
is called an open cover of X if X =

⋃
i∈I Ui. The space X is compact if every

open cover contains a finite subcover. (i.e. U1, U2, ..., Un ∈ {Ui} such that X =
U1 ∪ U2 ∪ ... ∪ Un)

Proposition 1.4.2. Every closed subset of a compact space is compact.

Proof. Given a compact set X, suppose Y is a closed subset of X. Let {Ui} be
any open cover of Y . Let U ′ = {Ui} ∪ {X − Y }, we can tell that U ′ is an open
cover of X so it has finite subcover U ′1, U

′
2, ....U

′
n. If {X − Y } is among any U ′i ,

throw them out. Hence Y is compact.

Proposition 1.4.3. Every compact subset of a Hausdorff space is closed.

Proof. Given a Hausdorff space X and a compact subset Y of X. Let x0 ∈
X−Y , the fact that X is Hausdorff allows us to find open sets Ux0

and Vy with
x0 ∈ Ux0

and y ∈ Vy such that Ux0
∩ Vy = ∅. Let {Vyi}i∈I be an arbitrary open

cover of Y , since Y is compact so there exist subcover such that
⋃n
i=1 Vyi which

is disjoint from the open set U = Ux01
∩Ux02

∩ ...∩Ux0n
with x0 ∈ U . Since x0

is chosen arbitrarily, so U is an open set in X − Y . Thus X − Y is open, so Y
is closed as the proposition claimed.

Proposition 1.4.4. Let f : X −→ Y be a continuous map. If X is compact,
then f(X) is compact as well.

Proof. Suppose the map f : X −→ Y is continuous and X is compact. Let U
be an open subset of X such that f(U) = V where V is an open subset of Y .
Let {Ui}i∈I be an arbitrary open cover of U , there exists a finite subcover such
that U =

⋃n
i=1 Ui since X is compact. Let {Vi}i∈I be an arbitrary open cover

of V . Since the map f is continuous, so we have f−1(Vi) ∈ {U1, U2, ..., Un}. If
this is not the case, we throw such Vi out. Thus U is chosen arbitrarily, so f(X)
is compact.

1.5 Quotient Map and Quotient Space

Definition 1.5.1. Given two topological spaces X and Y . Let π : X −→ Y be
a surjective map. We call π a quotient map provided that U ∈ Ty if and only if
π−1(U) ∈ Tx.

Definition 1.5.2. A partition A of a set X is a collection of subsets {Ui}i∈I
such that X =

⋃
i∈IUi and Ui ∩ Uj = ∅ if i 6= j.

4



Definition 1.5.3. Let X be a topological space and A a partition of X. Let π
: X −→ Y be a surjective map provided that π(xi) = Ui where Ui is an element
of A which uniquely contains xi. If we let TA denote the quotient topology on
A arising from the quotient map π, then we call A the quotient space of X with
respect to A.

1.6 Homotopy and The Fundamental Group

We’ve now developed the language needed to introduce the notion of homotopy.
A more detailed discussion will be given in Section 3, but we briefly define it
here:

Definition 1.6.1. Given two continuous maps f0 and f1 from X to Y. A ho-
motopy between them is a continuous map F such that

F : X × [0, 1] −→ Y

provided that for all x ∈ X, F (x, 0) = f0(x) and F (x, 1) = f1(x). If there exists
a homotopy F between f0 and f1, then we say f0 and f1 are homotopic and
write f0 ' f1.

Remark. By defining a homotopy we are defining an equivalence relation. So
in the terminology of abstract algebra, we can define a homotopy on a group to
form a quotient group in terms of cosets. As we will see, this is indeed the way
to define the fundamental group.

Definition 1.6.2. Let (X,x0) and (Y, y0) be spaces with fixed base points.
Assume that the maps f0, f1 : X −→ Y are base-point-preserving. A homotopy
F between f0 and f1 is based if F (x0, t) = y0 for all t ∈ [0, 1].

Definition 1.6.3. Let (X,x0) be a space with a base point x0, and let ∗ be
a base point on the circle S1 . The set of all continuous, base-point-preserving
maps for (S1, ∗) to (X,x0) is called the loop space of (X,x0) and is denoted by
Ω(X,x0). The based homotopy defines an equivalence relation on Ω(X,x0) and
the quotient space formed is denoted by π1(X,x0).

Theorem 1.6.4. Concatenation of loops defines a group operation on π1(X,x0).

Proof. Proof is intentionally omitted here.

Remark. In other words, concatenation of loops has an inverse, identity, and
follows the rule of associativity. So π1(X,x0) along with concatenation is called
the fundamental group.

2 Seifert-van Kampen Theorem

The Seifert-van Kampen theorem links the study of topological spaces with the
study of groups by giving a way to define the fundamental group of a space as
the product of the fundamental groups of the constituent spaces.
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2.1 Pre-Requisites

We briefly present some background algebra before tackling the theorem:

A normal subgroup N of a group G, is a subgroup N ⊂ G such that n ∈ N if
gng−1 ∈ N, ∀g ∈ G. That is, the elements of N are invariant under conjugation
by elements of G. For example, note that every subgroup of an abelian group
is a normal subgroup.

First isomorphism theorem: Let G and H be groups, and let φ : G → H
be a homomorphism. It follows that the kernel of φ is a normal subgroup of
G, the image of φ is a subgroup of H, and the image of φ is isomorphic to the
quotient group G / ker(φ). In particular, if φ is surjective then H is isomorphic
to G / ker(φ).

In group theory, a word is any written product of group elements and their
inverses. For example, if x, y and z are elements of a group G, then xy, z−1xzz
and y−1zxx−1yz−1 are words in the set {x, y, z}. The free product of a set of
groups {Gα} is denoted as: ∗α{Gα}, and is the group of all finite combinations
of words of constituent elements of both groups. Note that this operation is
not, in general, commutative (it is commutative only when one of the groups is
trivial).

We now wish to generalize the notion of the based fundamental group: Let
X be a topological space, and let x0 be a point in X. As before, we define a set
of continuous functions called loops with base point x0:

{f : [ 0, 1] → X|f(0) = x0 = f(1)}

and call the set of equivalence classes of these loops the fundamental group at
the point x0. For path connected spaces the fundamental groups at different
points are equivalent up to isomorphism, and we denote this group as

π(X)

2.2 Statement of Theorem

Theorem 2.2.1. Let X be the union of sets,
⋃
αAα = X such that ∀α, β

: Aα ∩ Aβ 6= ∅ and Aα ∩ Aβ is open and path connected. We claim that

∃φ : ∗απ(Aα)� π(X)

Furthermore, ker(φ) = N , such that N = 〈iαβ(ω)i−1βα(ω)〉 with ω ∈ π(Aα ∩Aβ)
such that

iαβ : ω� π(Aα) and i−1βα : π(Aβ)→ ω

And φ π(X) ' ∗απ(Aα)/N
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2.3 Proof that φ is surjective:

Proof. Given a loop f : I → X based at x0 there is a partition 0 = s1 < s2 <
... < sn = 1 of [ 0, 1] such that each interval [ si, si+1] is mapped to a single
space Aα. This is because each s ∈ [ 0, 1] has a neighborhood that is mapped
completely to a unique Aα in X. Compactness of I implies that there exists
a finite covering by these neighborhoods, such that their boundaries determine
our partition.

Denote the Aα containing f([ si−1, si] ) by Ai, and let fi = f |[ si−1,si] . Then,
f = f1∗f2∗...∗fn, where each path given by fi exists solely in the corresponding
Ai. Since Ai ∩ Ai+1 is path connected by hypothesis, ∃ a path gi from x0 to
f(si) ∈ Ai ∩Ai+1.

Now it is clear we can write a loop which is a composition (product) of loops
which each individually lie entirely in one of the constituent spaces, thus [ f ] is
in the image of φ, as it is the product of equivalence classes of loops, which is
the image under φ of a word in ∗απ(Aα). Thus φ is surjective.

It is more difficult to show that φ is injective. For further details see, for
example, [3] (pp. 45-46).

2.4 Intuition

The essential notion of the Seifert-van Kampen theorem is the fact that the fun-
damental group of a space can be obtained from the free product of constituent
spaces. The free product is obviously always larger, but sometimes equal to the
fundamental group of the union of the spaces. In particular, the key idea is to
construct a loop in the total space that is a product of loops which indiviually
exist solely in one of the spaces. The non-commutativity (except in the trivial
case) of the free product tells us that, metaphorically, going north then east
isn’t always the same as going east then north.

3 Groupoids And The Fundamental Group

First recall the definition of homotopy.

Definition 3.0.1. Let f0, f1 : X −→ Y be continuous maps. A continuous map
F : X × [0, 1] −→ Y is called a homotopy if

F (x, 0) = f0(x), F (x, 1) = f1(x)

for all x ∈ X. And we write f0 ' f1.
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In section 1.6, we mentioned without proof that concatenation defines a
group operation in π1(X,x0). Now given two paths f, g : [0, 1] −→ X, we define
(f ∗ g)(t) in the form such that

(f ∗ g)(t) =

{
f(2t), 0 ≤ t ≤ 1/2

g(2t− 1), 1/2 ≤ t ≤ 1

Suppose X now is path-connected, then all paths f : [0, 1] −→ X are homo-
topic. Say we have a constant path ip : [0, 1] −→ X such that ip(t) = p ∈ X
for all t ∈ [0, 1]. As we will later see that ip can be considered as an “identity”
which indicates that ip ∗ f = f provided that α(f) = p (the origin of f is p).
Since all paths are homotopic, so we have f ' ip for all paths f in X. There is
only one homotopy class in this case and it is trivial. To avoid such situation,
it becomes necessary to modify the original definition of homotopy. But before
that, we want to first introduce the definition of deformation retraction which
states how a function can “evolve” with “time”.

Definition 3.0.2. A deformation retraction of a space X onto a subspace A is a
homotopy F : X× [0, 1] −→ X such that F (x, 0) = x for all x ∈ X, F (X, 1) = A
and F (A, t) = A for all t ∈ [0, 1].

Informally speaking, a deformation retraction of X onto a subspace A is a
homotopy from the identity map of X to a retraction of X onto A, a retraction
is a map r : X −→ A such that r(X) = A, r|A = 1.

In general, we call a homotopy F : X × [0, 1] −→ Y relative to a subspace
A ⊂ X if the restriction to A is independent of t ∈ [0, 1]. And we denote it by
homotopy rel A.

Definition 3.0.3. Let A ⊂ X and f0, f1 : X −→ Y be two continuous maps
with f0|A = f1|A. We write

f0 ' f1 rel A

if there exists a continous map F : X × [0, 1] −→ Y with f0 ' f1 and

F (a, t) = f0(a) = f1(a)

for all a ∈ A, t ∈ [0, 1].

Here we introduced the definition of relative homotopy (homotopy rel some
subsets). And the original definition of homotopy can be modified into the way
that homotopy rel ∅. Such a homotopy is called free homotopy.

Definition 3.0.4. The equivalence class of paths f : [0, 1] −→ X rel {0,1} is
called path class and is denoted by [f ].

Note. {0,1} is the boundary of [0,1].
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In section 1.6, we mentioned that the fundamental group π1(X,x0) is a
quotient space of the loop space Ω(S1, ∗). As we will see later that the elements
in π1(X,x0) are just path classes defined above. But what restrictions should
be posed onto these path classes? In order to answer this question, we need first
to introduce the definition of the origin and end of a path. Also the definition
of groupoid.

Definition 3.0.5. Let f : [0, 1] −→ X be a path from x0 to x1. The origin of
f is x0 and is denoted by α(f), the end of f is x1 and is denoted by ω(f). A
path is closed if α(f) = ω(f).

Note. We can also define origin and end on path classes [f ] that are denoted
by α[f ] and ω[f ].

What then provides the “resources” of a fundamental group π1(X,x0)?

Definition 3.0.6. Let X be a space. The set of all path classes in X under the
binary operation [f ][g] = [f ∗g](though not always defined) is called a groupoid,
if it satisfies the followings:

(i). For every path class [f ], it has an origin α[f ] = p and an end ω[f ] = q.
We have

[ip][f ] = [f ] = [f ][iq];

(ii). Associativity holds whenever possible;

(iii). If α[f ] = p and ω[f ] = q, then we have

[f ][f−1] = [ip], [f
−1][f ] = [iq].

Note. A groupoid is not a group since the operation may not be defined.

Definition 3.0.7. The fundamental group π1(X,x0) with a basepoint x0 is
defined as

π1(X,x0) = {[f ] : [f ] is path class with α[f ] = x0 = ω[f ]}

with the binary operation
[f ][g] = [f ∗ g].

4 Knot Theory

A knot is an embedding of the circle S1 into R3. Two knots are equivalent if
there exists an ambient isotopy between them.
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4.1 Reidemeister Moves and Ambient Isotopy

There are certain continuous deformations which leave the topological properties
of knots invariant. These are called the Reidemeister moves.

Definition 4.1.1. The Reidemeister moves are local continuous deformations
of knots that appear as such:

The equivalence relation on diagrams generated by all Reidemeister moves is
called an ambient isotopy.

In section 3, we mentioned the definition of deformation retraction. Notice
that ambient isotopy is just a special case of deformation retraction, or that at
least we can make an analogy when we come to precisely define ambient isotopy.

Definition 4.1.2. Let g, h be two embeddings of a manifold M in manifold N .
An ambient isotopy is a homotopy F : N × [0, 1] −→ N considered to take g to
h such that F0 = 1, Ft is a homeomorphism from N to itself for all t ∈ [0, 1]
and F1 ◦ g = h.

Notice here that how similar these two definitions are.

Definition 4.1.3. Given two knots K0 and K1, we say K0 and K1 are ambient
isotopic if there exists an isotopy h :R3×[0, 1]−→R3 such that h(K0, 0) = K0

and h(K1, 1) = K1
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When we refer to a knot, we are really referring to the whole equivalence
class of knots which are ambient isotopic to one another. When we say two
knots are different, we really mean they are elements of different knot equiva-
lence classes.

In principle, because of Reidemeister’s Theorem (which states that two knots
are equivalent if their diagrams can be connected by a sequence of Reidemeister
moves), we can classify all knots by the diagrams generated by any sequence of
Redemeister moves on a given knot. In practice, however, it is exceedingly dif-
ficult to find an explicit sequence of Reidemeister moves between two diagrams,
and it is even harder to show that no sequence of Reidemeister moves exists
between two diagrams! Therefore, we must be more clever in showing that two
knots exist within different equivalence classes. Finally, we are ready to tackle
the problem of classifying and differentiating between

4.2 Knot Invariants

Because of the difficulty of finding an explicit sequence of Reidemeister moves
between knot diagrams, and the difficulty in proving no such sequence exists, we
need more powerful tools to classify knots. The most prominent tool is called a
“knot invariant”, and is defined as such:

Definition 4.2.1. A knot invariant is any function i of knots which only de-
pends on their equivalence class. If K1 and K2 are two equivalent knots,
K1
∼= K2, then i(K1) = i(K2), which implies that if i(K1) 6= i(K2) then

K1 � K2

Unfortunately, no complete knot invariant has been found. That is, for
all invariants i, while i(K1) 6= i(K2) =⇒ K1 � K2, the converse does not
necessarily hold.

4.3 The Bracket Polynomial and Its Generalizations

Our first explicit knot invariant is known as the Bracket Polynomial and is
defined as such:

Definition 4.3.1. For a given knot K, its bracket polynomial 〈K〉 is given by

〈K〉 = 〈K〉(A,B, d) =
∑
σ

〈K|σ〉d||σ||

where A,B and d are commuting algebraic variables and ||σ|| represents the
number which is one less than the number of loops in σ. Here σ runs over all
the states of K.
There is a much more intuitive way to understand the bracket polynomial,
through a pictorial method which relies heavily on something called the Skein
Relation, which is a rule about turning a local crossing into two separate cross-
ingless diagrams iteratively. This pictorial definition of the bracket polynomial
is defined as follows:
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1. Satisfies the Skein Relation:

2. 〈©K〉 = C〈K〉, where 〈©K〉 is the disjoint union of a knot K and the
crossingless diagram of the unknot.

3. Normalization: 〈©〉 = 1

To show the bracket polynomial is a knot invariant, it is sufficient to show
that it is invariant under the Reidemeister moves. We show invariance under

R2:

It is straightforward to show the the bracket polynomial is not invariant under
R1 moves, hence we fix this issue by generalizing to the normalized bracket

polynomial.

Definition 4.3.2. Let K be an oriented link diagram. The writhe of K, ω(K),
is given by the equation ω(K) =

∑
p ε(p) where p runs over all crossings in K,
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and ε(p) is the sign of the crossing:

Figure 1: The left crossing has ε = +1 , while the right has ε = −1.

Definition 4.3.3. The normalized bracket polynomial L of a knot K is given
by

LK = (−A3)−ω(K)〈K〉

4.4 The Alexander Polynomial

The first knot polynomial was discovered by James Alexander in 1928. It is
invariant under all three Reidemeister moves, applies to oriented knots, and is

defined as such:

1. ∆(©) = 1 for every diagram of the unknot

2. ∆(L+)−∆(L−) + (t
1
2 − t− 1

2 )∆(L©) = 0

At a crossing of whichever knot you wish to compute the Alexander
polynomial of, determine whether the knot is an L+ or L− knot, and

rearrange the above equation to compute the leftover terms according to the
Skein relations. We present an example of the diagrammatic breakdown of the

right-handed trefoil knot:

Hence the algebraic representation of the above is:
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∆Trefoil = ∆K1
− (t

1
2 − t− 1

2 )∆K2
(1)

= 1− (t
1
2 − t− 1

2 )(∆K3
+ (t

1
2 − t− 1

2 )∆K4
) (2)

= 1− (t
1
2 − t− 1

2 )(0 + (t
1
2 − t− 1

2 ))1 (3)

= t−1 − 1 + t (4)

We claim without proof that the Alexander polynomial is the same for the
left-handed trefoil. Indeed, one can show that the Alexander polynomial

cannot distinguish at all between chiral knots (those which are not ambient
isotopic to their mirror image).

4.5 The Jones Polynomial and Its
Generalizations—Kauffman Polynomial

Definition 4.5.1. The 1-variable Jones polynomial, VK(t), is a Laurent polyno-
mial in the variable

√
t assigned to an oriented link K which fulfills the following

properties:

1. If K is ambient isotopic to K ′, then VK(t) = VK′(t).

2. V = 1.

3. t−1VK+
− tVK− = (

√
t− 1√

t
)VK0

.

Theorem 4.5.2. Let LK(A) = (−A3)−ω(K)〈K〉. Then we have

VK(t) = LK(t−1/4)

which indicates that the normalized bracket yields the 1-variable Jones polyno-
mial.

Proof. Give two bracket polynomials 〈K+〉 and 〈K−〉. According to the basic
properties of bracket polynomials, we can write these two polynomials in the
form

〈K+〉 = A〈K0〉+B〈K ′0〉
〈K−〉 = B〈K0〉+A〈K ′0〉

By setting B = A−1, we have

A〈K+〉 −A−1〈K−〉 = (A2 −A−2)〈K0〉

Let ω = ω(K0) and α = −A−3, so we have ω(K+) = ω+ 1 and ω(K−) = ω− 1.
Hence, we have

A〈K+〉α−ω −A−1〈K−〉α−ω = (A2 −A−2)〈K0〉α−ω
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Thus,

Aα〈K+〉α−(ω+1) −A−1α−1〈K−〉α−(ω−1) = (A2 −A−2)〈K0〉α−ω

which can be rewritten in the form

−A4LK+
+A−4LK− = (A2 −A−2)LK0

By setting A = t−1/4, we have

t−1LK+
− tLK− = (

√
t− 1√

t
)LK0

And property 1 and 2 follow immediately from the property of the reduced
bracket polynomial.

There is another generalization of Jones polynomial, namely the Kauffman
polynomial.

Definition 4.5.3. The Kauffman polynomial FK(α, z) is a normalization of a
polynomial, LK , defined for unoriented links and fulfills the following properties:

1. If K is regularly isotopic to K ′, then LK(α, z) = L′K(α, z).

2. L© = 1.

3. L + L = z(L + L ).

4. L = αL and L = α−1L

Therefore the Kauffman polynomial FK(α, z) is defined by the formula

FK(α, z) = α−ω(K)LK(α, z)

The following proposition is stated without proof.

Proposition 4.5.4. We have

〈K〉(A) = LK(−A3, A+A−1)

and
VK(t) = FK(−t−3/4, t−1/4 +A1/4)

5 The Yang Baxter Equation

Now we have built up our knot-theoretic toolset sufficiently that we can ask,
“What is the point?” Though these structures are interesting in their own

right, it turns out that our study of knots leads very naturally to the famous
Yang-Baxter equation from physics. To get there we must first introduce a
diagrammatic notation to deal with tensors. We will not motivate such a

discussion, but it will quickly become apparent how we can use knot theory
and tensor diagrams to derive Yang-Baxter.
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5.1 Tensor Diagrams

A tensor T = (T ij ) with indices i and j can be represented as a box with
strands coming out of the top and bottom, representing the upper and lower

indexes respectively

Which permits a very convenient representation of matrix multiplication. We
represent the multiplication of two matrices M and N as

(MN i
j) =

∑
kM

i
kN

k
j = M i

kN
k
j (assuming Einstein summation notation). We

can then represent a sum over a common index of two matrices as a line
connecting the two strands. Diagrammatically:

Equivalently, any line connecting two strands may be interpreted as the
Kronecker Delta as such:

Most generally, any tensor like object with multiple upper and lower indices is
represented as such:

Now that we have our tensor diagram language, we can see that a knot is a
contracted tensor, which is represented according to the following rules:
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Where we have oriented our diagrams with respect to an upward time
direction, which hints at our eventual connection with quantum field theory...

5.2 Knots Reinterpreted

With our new rules to interpret local sections of knots algebraically as tensors
according to the rules laid out above, we can clearly see that a knot shall

represent a contracted tensor. We shall soon see how this leads naturally to a
quantum mechanical interpretation.

For example, here is the trefoil knot represented accordingly:

The tensor contraction t(K) for the trefoil is

t(K) = MabMcdδ
a
e δ
d
hR

bc
fgR̄

ef
ij R̄

gh
klM

jkM il

If we think of a knot sitting in a space-time plane, then each vertex may be
interpreted as a quantum mechanical event, as one does when constructing
Feynman diagrams, where minima are the creation of particles, maxima are

annihilations, and crossings are particle interactions. With this framework in
mind, it’s clear that a knot may be interpreted as some vacuum to vacuum

process.

17



In quantum mechanics, to get the probability amplitude of some process we
sum over the product of all possible intermediate states. So a knot contraction
as above is the expectation of the processes given in the specific knot diagram!

5.3 Topological Invariance and Yang-Baxter

A natural question to ask at this point is how our tensor contractions function
under the Reidemeister moves. Or rather, what happens if we make an

algebraic demand on our tensors to remain consistent with the topological
invariance of the Reidemeister moves?

Looking at the regular isotopies generated by the Reidemeister moves, we need
a more thorough set of special diagrams to account for the time-orientation

we’ve previously imposed. These are shown below:

Now we force the tensor contraction t(K) to be invariant under these moves,
which gets us the following equations:

MaiMib = δab = MbiM
ia (5)

Rabij R̄
ij
cd = δac δ

b
d (6)

Rabij R
jc
kfR

ik
de = RbckiR

ak
dj R

ji
ef (7)

R̄aibcMid = RiacdMbi (8)

Which implies that if R and R̄ are inverse, and if Mab and Mab are also
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inverse, then the regular isotopy is satisfied.
The third Reidemeister move gives us the most interesting equation:

Rabij R
jc
kfR

ik
de = RbckiR

ak
dj R

ji
ef

Which is, in fact, the famous Yang-Baxter equation.
It is quite astonishing that our study of knots and topology has resulted in an

equation which is of great use in statistical and theoretical physics. Our
topological argument of invariance under the third Reidemeister move

generated just the algebraic constraints needed to derive Yang-Baxter. This is
an amazing fact, and the intuition comes from interpreting knots as vacuum to

vacuum Feynman diagrams.

6 Knot Groups

6.1 The Wirtinger Representation

We start by introducing the so-called Wirtinger Representation, which will
describe the relation to be defined at each crossing of a knot when we try to

translate a knot into the language of groups. For instance, given a simple
crossing as follows, we at least know two points:

y

xz

Figure 2: it is unnecessary to include the orientation of the horizontal line

1. x, y and z are elements;

2. xy=yz

So we have the crossing given in the language of groups as

〈x, y, z|xy = yz〉

Remark. We find the relation in this case xy=yz through the right hand law.
We can imagine an arrow through the crossing into the page. Let your thumb
point in the direction of the arrow, then curl your fingers, and do the multipli-
cation following the direction your fingers curl. Every crossing can be analyzed
in this fashion.
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Figure 3: The left trefoil is right-handed, while the right trefoil is left-handed

6.2 Left And Right-handed Trefoils

Let’s first take a look at the right-handed trefoil. For such a trefoil, we know
at least two points:

1. we have elements x, y and z in the group;

2. the relations are zy=yz, yx=xz and xz=zy.

So in the language of groups, we have the right-handed trefoil in the form

〈x, y, z|zy = yx, yx = xz, xz = zy〉

Furthermore, we notice that yx = xz, indicating that z = x−1yx. By plugging
this z into the other two relations, we have:

zy = yx =⇒ x−1yxy = yx =⇒ yxy = xyx

and

xz = zy =⇒ xx−1yx = x−1yxy =⇒ yx = x−1yxy =⇒ xyx = yxy

we find out that they are the same which indicates that we can rewrite the
group of right-handed trefoil in the form:

〈x, y|xyx = yxy〉

Likewise, for the left-handed trefoil listed in figure 2, we have:

1. we have elements x, y and z;

2. we have relations yx=xz, xz=zy and zy=yx.

Set z = x−1yx as in last case, we have

xz = zy =⇒ xx−1yx = x−1yxy =⇒ xyx = yxy
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and

zy = yx =⇒ x−1yxy = yx =⇒ yxy = xyx

which indicates that we have left-handed trefoil in the form of group such that

〈x, y|xyx = yxy〉

we notice here that the group of left and right-handed trefoil are the same.
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